

Elaboration on an Integrated Architecture and Requirement Practice

Prototyping with Quality Attribute Focus

Stephany Bellomo, Robert L. Nord, Ipek Ozkaya

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA, USA

sbellomo@sei.cmu.edu, rn@sei.cmu.edu, ozkaya@sei.cmu.edu

Abstract— Projects seeking rapid, sustainable delivery are

combining agile and architecture practices to manage competing

goals of speed in the short term and stability. In a recent study,

we interviewed eight government and commercial project

teams that have adopted incremental and iterative software

development approaches and identified a mix of Agile and

architecture practices that teams apply to rapidly field

software and minimize disruption and delay. In this paper,

we elaborate one practice from this study, Prototyping with

quality attribute focus, to gain a better understanding of

how this practice works and what the benefits of the

approach are. As we analyzed this practice, we observed that it

leverages rapid feedback cycles weaving requirements and

architecture, characteristic of the Twin Peaks concept, at three

levels: feature development/sprint, release, and portfolio planning

levels. We also observed that each of these cycles have differing

degrees of separation and cadences. We also describe several

regularly occurring integration points within the Scrum

framework that allow for synching (weaving of architecture and

requirements). We describe the practice in some detail and also

discuss a few enablers that keep the practice working smoothly.

Index Terms—agile software development, architecture,

quality attribute, prototyping, release planning, requirements,

software development practices, architecture trade-off

I. INTRODUCTION

Projects seeking rapid, sustainable delivery are combining

agile and architecture practices to manage competing goals of

speed in the short term and stability over the long

term[1][2][3]. This paper stems from a study in which we

interviewed eight project teams identifying a set of practices

that enable rapid delivery. The practices that emerged from the

study represent a mix of Agile practices, architecture practices

and practices that combine these together (we refer to these as

integrated practices)[4][5][6]. In this paper, we elaborate one of

the more frequently used integrated practices from the study,

Prototyping with quality attribute focus (shown in Figure 2).

This practice integrates prototyping (often leveraged on Agile

projects to reduce uncertainty instead of developing lengthy

requirements specification documents [7][8]) and architectural

focus (consideration of quality attribute requirements during

prototyping).

During our interviews we captured several examples of

prototyping with quality attribute focus practice from teams in

different organizations. In this paper, we specifically focus on

examples from Team A and Team B (as we refer to them). We

begin with an example from Team A. Team A was giving a

user demo of a prototype concept when they received

unexpected feedback that system performance was slow. The

discovery of a performance issue with the prototype concept

resulted in weeks of delay. Several problems contributed delay.

Due to business pressure, quality attribute aspects of the

prototype concept were largely ignored. The architect and

product owner had not been collaborating on decisions so the

problem was a surprise to the team. The prototyped code was

tightly coupled with the development code so the team couldn’t

make changes to the prototype without holding up the whole

release. All these led to additional delays. Finally, the team

wasn’t prepared to do rapid tradeoff analysis of performance-

related design options. So, rather than elaborating the

prototyped user story in a smooth spiral fashion as depicted in

the Twin Peaks model [9], Team A experienced delays. Figure

1 depicts limitation of trade-off analysis causing delay and

impacting subsequent elaboration spirals.

Figure 1: Team A example of delay shown using

Twin Peaks model

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAY 2013 2. REPORT TYPE

3. DATES COVERED
 00-00-2013 to 00-00-2013

4. TITLE AND SUBTITLE
Elaboration on an Integrated Architecture and Requirement Practice:
Prototyping with Quality Attribute Focus

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University,Software Engineering
Institute,Pittsburgh,PA,15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Projects seeking rapid, sustainable delivery are combining agile and architecture practices to manage
competing goals of speed in the short term and stability. In a recent study, we interviewed eight
government and commercial project teams that have adopted incremental and iterative software
development approaches and identified a mix of Agile and architecture practices that teams apply to
rapidly field software and minimize disruption and delay. In this paper, we elaborate one practice from
this study, Prototyping with quality attribute focus, to gain a better understanding of how this practice
works and what the benefits of the approach are. As we analyzed this practice, we observed that it
leverages rapid feedback cycles weaving requirements and architecture, characteristic of the Twin Peaks
concept, at three levels: feature development/sprint, release, and portfolio planning levels. We also
observed that each of these cycles have differing degrees of separation and cadences. We also describe
several regularly occurring integration points within the Scrum framework that allow for synching
(weaving of architecture and requirements). We describe the practice in some detail and also discuss a few
enablers that keep the practice working smoothly.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

6

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

In this paper, we analyze Team B’s Prototyping with

quality attribute focus practice. Team B’s practice examples

demonstrate successful use of prototyping for validation of

requirements and design concepts including quality attribute-

related considerations. A high-level summary of key

observations from our analysis of Team B’s Prototyping with

quality attribute focus practice are summarized below:

 Close collaboration between the architect and product

owner on Team B at several integration points woven into

the project software development lifecycle allow for

weaving of architecture and requirements which enables

the team to reduce the expectation mismatch as well as risk

due to late discovery of requirements (particularly quality

attribute requirements).

 Team B’s prototyping approach as described in this paper,

as well as competency in rapid architectural analysis and a

flexible architecture, additionally contribute to the team’s

ability to smoothly elaborate requirements and architecture

that naturally emerges from prototype feedback.

II. BACKGROUND

Here we provide a very minimal overview of the findings

of the study from which this practice emerged as a backdrop.

We interviewed eight project teams from government and

commercial organizations that have adopted incremental and

iterative software development practices (such as agile) [4][5].

A set of practices that enable rapid delivery emerged from the

study. These practices spanned the software development

lifecycle and included a mix of different types of practices;

Agile practices, architecture practices and a practices that

combine both. Some practices were more widely used than

others. A summary of the practices from our interviews are

shown in Figure 2 ordered from the most to least used.

Integrated practices are shown bold.

PRACTICE SUMMARY
1. Release planning with architecture considerations

2. Prototyping with quality attribute focus

3. Release planning with joint prioritization

4. Test-driven development with quality attribute focus

5. Dynamic organization and work assignment

6. Release planning with legacy migration strategy

7. Roadmap/vision with external dependency management

8. Root cause analysis to identify architecture issues

9. Dedicated team/specialized expertise for tech insertion

10. Technical debt monitoring with quality attribute focus

11. Focus on strengthening infrastructure (runway)

12. Retrospective and periodic design reviews

13. Use of standards and reference models

14. Backlog grooming

15. Fault handling or performance monitoring

16. Vision document with architecture considerations

Figure 2: Practices summary table

At the time of the interview, Team B was leveraging the

prototyping with quality attribute focus practice on a project

developing a web-based analysis software system. The

software had been in production and use for twelve years and

used the Scrum development framework. They had organized

software development into two week sprints and six to twelve

month product releases.

III. PRACTICE DESCRIPTION

As they described their practice, Team B’s emphasized that

prototyping has been important to the organization in the past

but is becoming increasingly important for their survival. As

an industry company, they explained that government and

budget cuts mean the consequences of bad choices become

even bigger; a mismatch in expectations can mean the end of a

project. Consequently, requirements validation, technology

validation, and architecture validation have all become very

important to them. They explained that the value of prototyping

(to their team) is that it helps the team ensure that they are

delivering what business stakeholders expect. In addition, they

said that prototyping also helps them make better estimates,

plan incremental deliveries, validate technical feasibility for

new capabilities, and lay groundwork for the real

implementation.

Team B also explained that the quality attribute focus is

very important to them saying, “A quality attribute focus

enhances all those benefits of prototyping.” They further

explained that prototyping generates design ideas, but new idea

generation is a secondary benefit. Prototyping is part of a

“validate early and often” development philosophy. Vague or

complex requirements, technology integrations, and

architecture changes are important things teams need to

validate. The Team B’s prototyping with quality attributes

practice is summarized in the following bullets and illustrated

in Figure 3:

 RL-1: The product owner and architect agree that a

prototype of a feature should be developed in order to get

early feedback on the architecture’s ability to meet quality

attribute requirement (prototyping activities and

conventional Scrum sprints are planned at the same time at

the beginning of each release cycle).

 RL-2: The first prototype concept is developed on a

separate branch of code (not the development branch) and

is targeted for development in a future sprint.

 RL-3: The team walks the product owner and a subset of

users through a prototype concept demonstration during

the sprint user demo. Feedback on the prototype is

gathered.

 RL-4: The team holds a post-user demo meeting to discuss

feedback from the sprint user demo. If feedback has design

implications, the team rapidly develops architectural trade-

off options and provides them to the product owner.

 RL-5: The architect and product owner collaborate to

select design options (as required) and changes are

incorporated into the release plan. Steps RL-3 to RL-5 are

repeated until all feedback is incorporated.

 RL-6: The product owner decides when all feedback has

been adequately addressed and approves migration of the

prototype concept into the development environment. If

the prototyped code was developed on a separate branch,

the prototype code is merged into the development branch.

If the prototype concept is done in a separate tool or

environment, it is then implemented in the development

environment.

 Figure 3: Release Level Prototyping Steps

The prototyping with a quality attribute focus practice and

sprint feature development both leverage feedback points in the

Scrum lifecycle. When described at this high level they may

they seem very similar, but there they are separate and distinct.

The details which clarify these differences are summarized in

Figure 4, Prototyping Rules of the Road.

IV. PRACTICE ANALYSIS

In this section we present our analysis findings from the

elaboration. For this practice elaboration, we conducted three

phone interviews with Team B. The prototype lead was present

at all three interviews. The first interview was a short call with

the prototype lead focused to gather project context. The

prototype lead and the chief architect were both present for the

second interview which was more structured and recorded. The

third interview was a short call with the prototype lead to

gather more detail about the practice for this elaboration. This

call was not recorded, but detailed notes were taken. We then

review the data from all three interviews to derive these

observations.

Feedback-driven weaving of architecture and requirements

We observed that Team B weaves architecture and

requirements by fostering informal, but regularly occurring,

collaboration between the architecture stakeholders

(architect/team) and business representatives (product

owner/users) as part of their Scrum management activities.

This bringing together of the architecture and requirements

sides allows the team to elaborate requirements earlier in the

lifecycle avoiding surprises from unanticipated prototype

feedback. Three places where this we observed that this occurs

is: release planning, sprint user demo, and post-user demo

feedback analysis. These three integration touch points

represent small feedback loops (shown on Figure 3 with Twin

Peaks symbol).

Integration at release planning. (Shown in Figure 3 at

step RL-1). The product owner and architect collaborate on key

requirements and design for the initial prototype concept in the

beginning of a release planning cycle. Trade-offs are discussed

as required. Because prototyping and feature development

resources are shared, the product owner weighs the value of the

prototype changes against the value of other features in the

release and determines which should move forward.

Integration at the sprint user demo (Figure 3, RL-3).

During the sprint user demo the product owner and users share

feedback on the prototype concept with the architect. During

the user demo, the architect may also begin to ask users

questions to try to get at unstated requirements gently probing

for more information. The team explained how this probing

works through example. The team was assigned to develop a

prototype for a feature; however, no quality attribute

requirements were included in the prototype concept

description (user story). However, when the team demonstrated

the prototype to the user the team said they got a “feeling” that

the user didn’t like it. So, the architect informally asked a few

more questions (during and after the demo) until they identified

an emerging performance requirement. By probing further and

elaborating the requirement, the team was able to start working

on a performance design improvement early avoiding

unanticipated discovery of this requirement late in the lifecycle.

Integration at the post-user demo analysis. (Figure 3,

RL-5) This is the integration point when the product owner and

architect collaborate on design trade-offs that may result from

prototype feedback. In these cases, there may be several design

options and trade-offs that need to be considered (or there may

be no design considerations). Working together, the

architecture and requirements sides discuss options as required.

Overview of Prototyping Rules of the Road (for this team)

Team B described several key elements that define their

prototyping practice shown as rules of the road in Figure 4.
 Release Level Prototyping

Rules of the Road
Rule 1 Prototyping should be done at least a full sprint cycle

before targeted feature development so there is time for

at least one feedback cycle (never in the current
development sprint cycle).

Rule 2 Prototyping work should not be done in the same branch

of code or environment as where the current feature
development is work.

Rule 3 Not all features need to be prototyped, but for those

features that are determined to require prototyping

should not be skipped. (We explore criteria for

determining what to prototype in the Discussion
section).

Rule 4 There is no separate “prototyping team”; the same team

members that develop features develop feature
prototypes.

Rule 5 The product owner prioritizes prototype development

and feature development work at the same time during

release planning. The product owner can stop prototype

work at any time or trade off a current prototyping effort
for development of new feature.

Rule 6 To the extent feasible, prototyping should be done in an

environment technically similar to the target
environment.

Rule 7 Prototyped features are usually demonstrated at the

weekly user demo feedback sessions (these are the same

user feedback sessions where developed features are

demonstrated) to take advantage of scheduled access to
the stakeholders.

Rule 8 Minimalistic prototyping is encouraged. Objectives to

achieve validation of the concept to be prototyped

(whether it be to validate a requirement or an

architectural design) should be well defined and
prototyping depth and breadth should be in accordance.

Rule 9 The product owner and a subset of users (subject matter

experts) jointly provide feedback during prototype
demonstrations.

Rule 10 Validation of critical requirements and design concepts

is the focus of the prototyping practice, not generating
new and novel design ideas

Figure 4: Release Level Prototyping "Rules of the

Road" (from Team B)

The team gave an example to illustrate the importance of

Rule 1 (prototype prior to the target sprint). They were pressed

for time and decided to not start prototyping prior to the target

sprint (for a feature that they said needed prototyping). Since

the team started the prototype during target development sprint

(not before as the team usually does), when the team received

feedback there was no time to incorporate it. In this example

the team also broke Rule 2, and did not prototype in a separate

environment from the development environment. As a result

they could not separate prototype-related changes from other

development work and the whole release was delayed.

We observe that these rules are really guideposts, not hard-

and-fast rules, and should be applied as appropriate. For

example, Team B also explained that Rule 6 is encouraged but

is not always feasible or cost effective. They explained that the

decision to prototype in an environment that is technically

similar to the development environment (or target

environment) depends on a lot of things, particularly the focus

of the prototype. For example, if the team is validating user

interface requirements, they may want the prototype to visually

be accurate so they need to use the actual tools for building that

interface. They explained that the team also considers the cost

(time, resources, etc.) involved in building a technically similar

environment against the value derived from the prototype. In

Rule 8 the Team B explained that the use of minimal

prototypes is strongly encouraged and that prototyping should

reflect the depth and breadth necessary to validate the desired

requirement or concept. They suggest that detailed

development and design that is not directly related to validating

the prototype concept should not be part of the prototype

concept development. This supports Royce’s notion that

unjustified early precision in requirements and planning are

counterproductive giving the illusion of progress but leaving

important areas gray [10].

Architecture-related factors to enable rapid response

We observed some other factors in Team B’s examples that

contribute to the effectiveness of the prototyping approach. We

summarized these here.

Rapid architecture trade-off analysis. As prototype

feedback is collected from users during a user demonstration

(integration point RL-3), the team and architect must be

prepared to quickly respond with architectural trade-off

options. Team B suggested that the following items help enable

rapid architectural analysis during prototyping for them:

 Knowledgeable, involved, and vocal architect

 Good understanding of how the system behaves

 “Key architecture documentation”

With respect to the last bullet, Team B explained that their

project was lacking in “key architecture documentation”. They

said they would have been able to respond to prototype

feedback more rapidly if they had key architectural views (or

some type of representation). The Team A example also

illustrates the importance of rapid trade-off analysis in the

prototyping practice. Because Team A did not have the ability

to rapidly re-evaluate design options there was additional

delay. Rapid architecture trade-off analysis is shown in in the

context of the practice execution in Figure 5.

Flexible architecture. Team B described their software

product as “mature and flexible” explaining this allowed them

to experiment more freely with prototype concepts. Perhaps we

are seeing signs of the idea suggested by Royce that when

projects have reached a mature state they can better balance

their resource investments between defensive efforts (such as

bug fixes, feature commitments, and schedule commitments)

and offensive efforts (such as new integrations, new

innovations, improved performance, earlier releases, and higher

quality) [10]. Flexible architecture to support prototype

experimentation is shown in in the context of the practice

execution in Figure 5.

Figure 5: Example enablers for rapid architecture-

side elaboration

V. DISCUSSION

The team described another prototyping practice, Research

and Development (R&D) prototyping practice. The R&D

prototyping practice description starts at the portfolio level

shown at the top of Figure 3. The first phase of the R&D

prototyping practice is separate from the Scrum sprint

development cycle. The second phase feeds into it. The team

summarized some of the differentiating factors between R&D

prototyping and release level prototyping as:

 The R&D prototype is typically funded by the

organization, rather than the client.

 The work is done in an R&D environment using tools and

hardware typically purchased by the organization (not the

development project).

 R&D prototypes are often prototypes of infrastructure

components or features that serve as foundational

capability for multiple features or products.

 R&D prototype concept is not shared with the prototype

concept until the team feels it is “ready to be shared”.

Team B gave the following example to illustrate R&D

prototyping. In the first phase, the Team B’s organization

decides to develop an R&D prototype of a server clustering

capability (to enhance web-based system performance) with

hopes that this capability could be offered to multiple clients.

The clustering prototype is developed in the organization’s

R&D environment (not a project environment). There are

several internal feedback discussions between the architect and

the Team B’s organizational business stakeholders reviewing

the prototype. The R&D prototype is presented to the product

owner when/if there is an appropriate opportunity do so. If the

prototype is accepted by the product owner, the second phase

of the R&D practice begins. At this point the R&D practice

merges with the Scrum development cycle and follows steps

RL-1 through RL-6 (Figure 3). For Team B, this generally

means rewriting the code or installing and configuring tools

into a project environment.

From the examples gathered from Team B, we observe

three levels of weaving requirements and architecture: Scrum

feature development level, release level prototyping, and R&D

prototyping level. Traversing from bottom to the top of Figure

3, feature development level contains integration points at the

user demo and post-user demo meetings. The release level

weaves architecture and requirements when the product owner

and architect come together during release planning. The R&D

prototype level supports integration points at the portfolio level

and also leverages integration points at the release/sprint levels

(if the prototype is accepted by the product owner). The release

level prototyping only looks forward a few sprints at a time and

is generally for smaller feature prototyping efforts. R&D level

prototyping looks further ahead than releases to consider

prototypes that support the organization’s product roadmaps

and product portfolios. At the R&D prototyping level the team

has the option to decouple the prototyping environment from

the development environment.

There are several areas we would like to investigate further.

Team B said that the mature nature of their software

architecture was an enabler for rapid and effective prototyping.

We would better understand what architecture structures

enabled release and R&D level prototyping. We would also be

interested in learning more about the influence of business

pressure the prototyping practice. Team A was still in the early

stages of its software product life. We would like a better

understanding of the relationship between project maturity and

consideration of quality attributes in prototyping. Team B also

noted that quality attribute focus is difficult to achieve in

prototyping if projects don’t define quality attributes well.

They suggested that sample quality attribute requirements for

enterprise systems could be useful and worthwhile to explore.

Perhaps this suggests applicability of generic quality attribute

scenarios for prototyping on iterative, incremental projects

[11].

We also observed differing degrees of separation and

cadence in the R&D prototype practice. This raises several

questions for future investigation with respect to the parameters

that influence successful weaving, as well as when it is

appropriate to move from one level to the next:

 What are the criteria for determining what should be

developed as a feature, prototyped at the release

level, and prototyped at the R&D level? Could be

business driven (need high level of requirements

validation) or architecturally driven (need to validate

architectural changes)?

 What are the appropriate time bounds for each level?

 What is the optimal size of prototyped efforts at each

level?

 How is the prototyping effort measured? How are

prototyping artifacts valued in terms of team

productivity and product quality?

 How much prototyping is appropriate and when is it

best utilized?

 Is the approach of focusing on high-risk prototyping

(through skeletal development) over feature-driven

prototyping counter to Scrum or complementary?

VI. CONCLUSION

Counter to the traditional practice of conducting formal and

separate requirements and architecture reviews, we observe

through this practice elaboration that natural integration points

throughout the Scrum framework (such as sprint planning,

demo, and retrospective, release planning meeting, user demo,

and post-user demo feedback analysis) can provide

opportunities for weaving architecture and requirements into

the incremental development lifecycle. The natural rhythm of

Scrum lifecycle provides a time-bound structured feedback to

identify potential hidden requirements.

Team B’s prototyping with quality attribute focus practice

requires collaboration between architect and product owner

which is not present in Scrum. Requirements analysis and

prioritization are done by the product owner and architectural

design is done by the development team in Scrum [12]. The

problem with this approach is that no one really has the whole

picture which can leave room for unwelcome surprises. For

example, if important information, such as the performance

requirement in the Team A example, is not discovered or

shared until late in the development lifecycle the project is

likely to encounter unexpected delay when the discovery is

made. In addition Scrum, being a project management

framework, does not provide much guidance in terms of

incorporating architecture practices into the development

lifecycle.

This practice also sheds light on several aspects of the

development effort that position the team to respond quickly

and efficiently when prototype feedback suggests architectural

change. The ideas suggested in the Team B’s prototyping rules

of the road as well as the suggested enablers for rapid trade-off

analysis and flexible architecture may be provide useful

insights for other projects that would like to leverage the

benefits of prototyping with quality attribute focus.

This practice elaboration provides an example of how

architecture practices was integrated into Scrum incremental

development (for example, the weaving of probing style

requirement elicitation as part of the user demo). The idea of

integrating practices is beginning to gain traction in the Agile

community. In a recent blog posting, Ken Schwaber described

“Scrum And” as a path of continuous improvement in software

development beyond the basic use of Scrum [13]. In the future,

we would like to elaborate some of the other integrated

practices listed in Figure 1 to see what other new insights can

be gained.

ACKNOWLEDGMENT

Copyright 2013 Carnegie Mellon University and IEEE

This material is based upon work funded and supported by

the Department of Defense under Contract No. FA8721-05-C-

0003 with Carnegie Mellon University for the operation of the

Software Engineering Institute, a federally funded research and

development center.

This material has been approved for public release and

unlimited distribution. DM-0000168

REFERENCES

[1] Director of Defense Research and Engineering, “Rapicapability

fielding toolbox study,” Final Report, March 2010.

http://www.cogility.com/Documents/Rapid_Capability_Fielding

-Public_Release.pdf

[2] M. Denne and J. Cleland-Huang, “Software by Numbers,”

Prentice Hall, 2003.

[3] M. Hotle, D. Norton, and N. Wilson, “The end of the waterfall

as we know it.” Gartner Research, August 20, 2012.

[4] S. Bellomo, I. Ozkaya, R. Nord, “A Study of Enabling Factors

for Rapid Fielding, Combined Practices to Balance Tension

between Speed and Stability “ (ICSE Conference 2013)

[5] A. Martini, L. Pareto, and J. Bosch, “Enablers and inhibitors for

speed with reuse,” Proceedings of the 16th Software Product

Line Conference, ACM, New York, v. 1, pp. 116-125,

September 2012.

[6] F. Bachmann, R. L. Nord, and I. Ozkaya, “Architectural Tactics

to support rapid and agile stability.” CrossTalk: The Journal of

Defense Software Engineering, Special Issue on Rapid and

Agile Stability, May/June 2012.

[7] K.Beck et al., Agile Manifesto, http://agilemanifesto.org/

[8] Boehm B. A spiral model of software development and

enhancement. IEEE Computer, May 1988, 21(5): 61{72.

[9] Hall, Jon G., et al. "Relating software requirements and

architectures using problem frames." Requirements Engineering,

2002. Proceedings. IEEE Joint International Conference on.

IEEE, 2002.

[10] W. Royce, “Measuring Agility and Architectural Integrity”,

International Journal of Software and Informatics, Volume 5,

Issue 3, 2011

[11] L. Bass, P. Clements, R. Kazman, “Software Architecture in

Practice, Third Edition.” Addison-Wesley, October 5, 2012

[12] K. Schwaber and J. Sutherland, “Scrum guidebook,” Scrum.org

and Scrum Inc., 2011.

[13] K. Schwaber, (blog) “Telling it like it is,”

http://kenschwaber.wordpress.com/2012/04/05/Scrum-but

replaced-by-Scrum-and/ , April 5 2012.

